Grape packing app:

Grape packing app for packing table grapes, domestic & export: Manage grape grading, washing, packing & labeling, sales & orders, shipping & export. Complete grape packing solution for grape traceability, audits, and recall.

Easy grape packing; reduced grape waste; better traceability.

Grape packing app:

Grape packing app for packing table grapes, domestic & export: Manage grape grading, washing, packing & labeling, sales & orders, shipping & export. Complete grape packing solution for grape traceability, audits, and recall.


Manage incoming Grape packing inventory & storage inventory, capture supplier details, traceability and costs (optionally capture on PO in advance), create inventory & pallet labels, record storage location of inventory.  Automatic inventory audit trail and tracking.  Unlimited inventory items. Bar-code inventory management.


Perform stock-takes any time by category or storage location.  Know how much Grape inventory you have in real time, even search by storage location.  Report by product line and storage location, or product category. 

GRAPE FARM Management

Full farm record keeping, activity management, best practices, budgeting, time-sheets, machinery costs, inventory, cherry farm traceability, PHI/WHP management, and more... 

Sales, shipping,  orders

Print pick sheet to pick Seafood inventory & storage orders manually, or scan inventory / pallets onto orders, or auto select inventory,  or rapidly sell without an order.  Track paid, and unpaid invoices.  Attach documents to invoices / photos of outgoing shipments.

Traceability & recalls

Instant mock recalls both up and down the supply chain using keys based on supplier lot/batch, supplier name, delivery date, invoice #, inventory #, pallet #, customer reference, order # and more...  Reduces fresh produce food safety compliance costs and makes audits easy. Optional fresh produce blockchain by CHAIN-TRACE.COM

Invoices, BOL, labels for pallets & inventory

Choose from a gallery of invoices, bill of lading, freight notes, and industry standard fresh produce labels including Walmart, Tesco, Aldi, Coles, Pick 'n Save, Woolworths and more...

Grapes (Vitis vinifera L.) are berry fruit belonging to the grapevine family (Vitaceae). Grapes come originally from south-west Asia.

Grapes are cultivated on vines (climbing shrubs). Dessert grapes are very carefully cut by hand and individual sick or damaged berries are removed. They are harvested at full ripeness, i.e. at the climacteric stage, as they do not post-ripen well after harvesting at the preclimacteric stage. The „Brix“ value is used to determine the time of harvest.

The berries on the panicles (commonly known as „bunches“) are usually covered by a whitish wax layer or bloom which can easily be wiped off and provides natural protection.

Before being eaten, dessert grapes should be washed thoroughly in order to remove any traces of spray.

Grapes are cultivated in the open, under glass (Belgium, Netherlands) and in plastic tunnels. Cultivation under glass and in tunnels allows harvesting times to be extended.

The following varieties may be distinguished:

White varieties (green, yellow to amber-colored varieties)
Dark varieties (red, blue to black varieties) which get their color from anthocyanins (oenin)
Waltham Cross grapes, so named because they were first exported to South Africa from the English town of this name. These have a stronger skin, are not so tightly packed on the bunch and are thus less susceptible to spoilage
Muscat grapes, which have a musky aroma, which occur as both white and dark varieties
Varieties with up to 5 seeds, although the seedless varieties are more popular

Quality / Duration of storage

Grapes awaiting transport should be sound, fresh, exhibit no foreign odors or flavors, be free of abnormal moisture, have no pressure marks or bruises, should not include any burst or shriveled grapes or any which have fallen from the bunch, nor exhibit any fungal growth or dried out stems. Grapes to be eaten fresh (dessert grapes) must have reached their full ripeness and color and must not be withered.

Seedless varieties are considered to be of higher quality and are therefore particularly popular with consumers.

Various sources state maximum duration of storage as follows:

Temperature Rel. humidity Max. duration of storage Source
-1 – 0°C 90% 4 weeks [1]
1 – 4°C 90 – 95% 8 weeks [3]
-1 – -0.5°C 90 – 95% 8 – 24 weeks (depending upon variety) [5]

Where controlled atmosphere transport is used, the transport and storage duration of the grapes may be extended. The following parameters apply in such a case [16]:

Temperature Rel. humidity O2 CO2 Suitability for controlled atmosphere
1.1 – 2.2°C 90 – 95% 3 – 5% 1 – 3% Moderate

Intended use

Dessert grapes are principally intended to be eaten fresh.


(Click on the individual Figures to enlarge them.)

Photo, black grapes

Figure 1 Photo, white grapes

Figure 2

Countries of origin

This Table shows only a selection of the most important countries of origin and should not be thought of as exhaustive.

Europe Turkey, Spain, Italy, France, Hungary, Romania, former Yugoslavia, Bulgaria, Greece, Cyprus, Belgium, Portugal
Africa South Africa
Asia Israel
America Chile, Argentina, Brazil, USA
Australia Australia, New Zealand

Grape Packaging

Grapes are packaged in crates, fruit crates and cartons, each containing 10 kg. Particularly high quality grapes are individually wrapped or packaged in shaped trays in cartons lined with wood wool or in perforated polyethylene film in fruit crates.

Packaging should be treated against mold attack.

Can you explain how packaging and shipping grapes in expanded polystyrene helps?
Lindenmuth: We know that grapes begin to deteriorate immediately at harvest. So, the aim of post-harvest treatment is to limit the rate of deterioration, and that can be done by maintaining the cold-chain process using EPS packaging — enabling quality grapes to make it to the grocery store aisle — so ultimately, consumers have fresh, juicy grapes when making their decision to buy or not to buy.

Recycling is an important part of sustainability and is increasing, along with the growth in new collective programs in the industry. EPS is not organic, so it has to go through a process. Shipping EPS containers that are full of air to a recycling facility can be expensive, which is one of the reasons why people are not doing it. But, one of the biggest positives in the industry over the next three or four years is new technology that recycles expanded polystyrene and massively reduces its transportation costs.

There’s a new method we are going to be part of, an experiment in Canada, where a company called Polystyvert Inc. has invented a process where they can take our recycled material through a chemical process; restore it back to its original state; then send it back to the manufacturers of chemical resins — who will then make it into resin and ship back to us to manufacture new products. [This is] a complete, full-circle recycling using a decentralized model that helps reduce transportation costs.

If so, what changes in the food/beverage industry might be ahead?
Lindenmuth: I do see that there’s more use of the containers (Fish Boxes, etc.) to display the fruit and other products in the stores, right in the EPS box. Therefore, there are more and more requests for printing artwork and the brand name on the containers. We will begin to do this this year ... Holiday Grapes, Goblin Grapes, etc.

Explain how EPS differs from Styrofoam.
Lindenmuth: The EPS material is not Styrofoam and is manufactured differently, in that the EPS manufacturing process does not use CFCs, HCFCs, HFCs or formaldehyde — which are harmful to the ozone layer. Styrofoam—a registered trademark brand of another company — has never been used to hold food.

What are some applications for this packaging beyond grapes?
Lindenmuth: Our packaging can be used for many kinds of berries, such as strawberries and blueberries. We also supply our packaging for other types of food, as well as to the pharmaceutical industry. We invested in new technology and equipment. We have the ability to manufacture products quickly with no additional permits needed and have the supply chain. And, most importantly, we have a committed workforce to do the work.

Table Grape Packing Process
Table Grape Harvest, Packing & Much More!
You are currently viewing Table Grape Harvest, Packing & Much More!
Post published:July 13, 2021
What an exciting trip to visit a table grape harvest and packing operation at Illume Ag in the Coachella Valley! The grapes shown here are the Midnight Beauties, which are black seedless grapes.

Just to add a little bit of context, the Coachella Valley is the desert located in Southern California. I visited this operation in the middle of June, when the temperatures were well into the hundreds. The benefit of working within the grapevines is the extra shade, but there is no escaping the humidity!

Where are Grapes Grown in California?
When is Grape Season in California?
Table Grape Harvest & Packing
Table Grape Harvesting
Table Grape Packing
Questions about Table Grapes
Where are Grapes Grown in California?
Table grapes (not wine grapes) are grown in two main regions throughout California: the Coachella Valley (southern California) and the San Joaquin Valley (central California). The example provided here is from a growing operation in the Coachella Valley.

When is Grape Season in California?
Between the two main growing regions in the state, table grapes grown in California are available from May to January, with the season starting in the Coachella Valley and ending in the San Joaquin Valley. So, make sure you check your grape packaging to see that you are buying California grown grapes when/where possible!

Table Grape Harvest & Packing
For a detailed overview of the entire harvesting and packing process, check out the video below! In it, you can also see what the bunches look like before harvest compared to the bunches you buy at the grocery store!

Table Grape Harvesting
The table grape harvesting process is as follows:

The harvesters take carts into the rows of grapevines to harvest. These carts contain multiple bins that will be filled as the workers harvest. (At this particular operation, they use bags to cover the bins and then switch them out once they get dirty.)
They clip the bunches from the grapevines using clippers, and then thin out the bunches based on quality aspects (e.g., not the right color, pruned, has some sort of physical defect such as cracking). One really notable difference regarding the table grape harvesting process is the slowness and attention to detail. The workers are carefully selecting the grapes that are ready for harvest, and then removing the fruit that does not meet quality specifications.
Once all of the buckets have been filled, they take them to a designated packer.
Harvesting Table Grapesady passed their harvest time are left on the vines.

How should I wash grapes at home?
The FDA recommends that you only wash them with water. You should also make sure and wait to wash them until right before you are going to eat them. This will help them last for longer. 

Most of South Africa's table grapes are exported to the EU and the UK. In recent years, prepackaged table grapes are now preferred in many European supermarkets. This increased demand has resulted in stringent quality standards, including the specification of punnet mass. Locally, table grapes are packed manually using seasonal labour, who often have limited formal education. Punnets must conform to upper and lower mass limits, but many deviations occur due to human and machine error. Check-weighing proved effective in reducing out-of-specification punnets, but human and machine errors were still problem factors.


Despite concerns about packaging material wastage [1, 2], the display space devoted to pre-packed fruit and vegetables in European supermarkets, and the sale of pre-packed products in the United Kingdom, have increased -by 70% and 71% respectively during the past decade [3]. Most of South Africa's table grapes are exported to these countries [4]. Currently, only 30% to 40% is pre-packed in transparent 500g containers known as punnets, but the growing demand is driving a change towards punnet-packing [5, 6, 7].

Punnet-packing is labour intensive, and quality assurance is a major challenge. The supplier must take into account a 2% to 3% mass loss due to a reduction in moisture content during shipping [8], to ensure a net mass of at least 500g for each punnet upon arrival overseas, when packing to the minimum system. Alternatively, an average mass of 500g per batch of 1,200 punnets with a tolerable negative error of 15g per punnet must be ensured when packing to the average system [9, 10]. Sampled quality inspections are performed at the inland pack houses and on arrival overseas [11, 12]. Under-mass punnets may lead to the rejection of a pallet containing 1,200 punnets. The upper mass limit depends on the producer, and an optimal ratio of productivity-to-oversupply beyond specification - referred to as 'giveaway' - needs to be found.

Several systems are available for packing grapes into punnets. All systems rely on humans to do the work, and all have some means to assist the packer to achieve the correct mass. None of these are, however, entirely error-proof. In an effort to eliminate underweight punnets and to limit 'giveaway', producers have started implementing external check-weighers, as well as replacing old systems with new ones featuring mandatory internal check-weighing.

During the 2011/2012 packing season, four different systems employed by three large grape pack houses were evaluated. The four systems are described in the following section. The data sources and data gathering methodology are explained in section 3. The results are presented and discussed in section 4, followed by the conclusion in section 5.


In order to ensure complete customer satisfaction in a mass production environment, the quality of all products must conform to the required quality standards [13, 14]. In the grape packaging industry, all possible steps are taken to ensure quality during production [15], but in the end, the quality of finished products is dependent on humans. The only way to ensure that all products leaving the pack house comply with minimum quality standards is through 100% final product inspection [16]. Check-weighing can, however, be used to inspect one of the key quality parameters, that of punnet mass.

Punnet packaging systems were evaluated during this study. Three were existing systems with external check-weigher modules added before the beginning of the packing season, and one was a new system with integrated internal check-weighing only. Internal check-weighing refers to the built-in functionality of a punnet packaging system to perform check-weighing on punnets; and external check-weighing refers to the addition of an automated external check-weighing module to the existing system. Table 2.1 gives a summary of the four systems.

In addition to the normal upper and lower mass limits, the three systems in this section also have a target mass parameter. The system will aim to produce punnets with a mass closest to the target. The local storage combination system and computer-supported scale system make use of dynamic target mass adjustment. In the local storage combination system, the mean fill-mass is kept as close to the target as possible by dynamically adjusting the upper limit to push the band of permitted mass either upwards or downwards towards the target mass. In the computer-supported scale system, both the lower and upper limits are simultaneously adjusted to keep the allowable bandwidth constant [20].

The local storage combination system consists of a vertical storage rack with a microcontroller-based scale on each side, featuring dynamic target mass adjustment. Figure 2.3 describes the operation of this system. The two sides are integrated using common in-process storage. For optimal operation, three people are required on each side. The three workers on each side switch position throughout the day and cross-check each other's work [17].

Because of the monotony of the task, errors are bound to occur [18]. This creates a need to remove the possibility of human error from the system [16]. This system therefore has an internal poka-yoke type error-recognition system that recognizes an incorrect punnet before it is finished [21], and that is independent of lapses in the operator's attention span [22]. After the contents of the two complimentary punnets have been added together, the internal check-weighing function verifies that the net mass of the punnet is within specification, and a green go-ahead light is activated on the display. However, it is still dependent on the operator/packer to execute his task as instructed.

The conveyor system is a computerised horizontal conveyor combination system, described in Figure 2.4. The system runs at high speed, and packers need to be constantly alert not to miss a bunch or pick up the wrong bunch. This system's internal check-weighing is based on combinations made by the computer, and assumes that packers do not make mistakes and that no loose berries fall from bunches when picked up from the cups. The check-weighing function gives no feedback to the packers.

With the conveyor system, berries that fall from bunches when handled are left behind in the cups, and can result in underweight punnets. Berries protruding from punnets may get dislodged before the punnet is closed, resulting in under-mass punnets.

The Yerkes-Dodson human performance curve depicted in Figure 2.6 [25] shows that performance is related to the levels of arousal, stress, and anxiety experienced. It is difficult to determine the level of stress or arousal that results in acceptable performance because it differs between individuals [23]. In the pack house setting, the level of stress and anxiety can become rather high, especially just before lunch and later in the afternoon when the amount of grapes in the pre-cooler is perceived to be an insurmountable task for the day. (The general practice is that grapes should be packed on the same day that they are picked.) Workers become exhausted by the monotony and by their standing position [18]. Human errors mostly occur during these periods.

From this discussion it is clear that the current solutions for packing punnets are not mistake-proof, and that success ultimately relies on the human operators performing their task correctly and not circumventing built-in error-correction functionality. These operators, however, are mostly seasonal workers with a limited formal education and low level of numeracy [27, 28]. This proves to be a challenge in the mistake-proofing process. An automated 100% mass check of the final product could ensure that no punnets with out-of-tolerance mass go through the process undetected.

2.4 External check-weighing module and integration

An external, independent check-weigher can be added to an existing system with minimal change to the infrastructure [22]. The check-weigher used in the evaluation is a modular system comprising a load cell-and-conveyor belt combination with control panel and controller, as well as a separate faulty package rejection unit to remove the punnets with out-of-specification mass. The unit is shown in Figure 2.7.

Figure 2.7: Automated external check-weighing module

Although the check-weigher is fully automated, it still relies on a human to set it up and to ensure that the air pressure for the pneumatic rejection unit is adequate.


During the 2011/2012 packing season, data from the four different systems described above was collected by collating the check-weigher data and by extracting stored data from the computer controlled system.

For validation of the results, a comparison was made with information from the company's UK operation. Upon arrival in the UK, the open-top punnets are flow-wrapped. During this process the punnets are check-weighed [1, 11, 29]. Two sets of data from the 2010/2011 and 2011/2012 packing seasons were obtained from the UK.


To facilitate comparison, 2,5% was subtracted from the net mass at production to compensate for moisture loss during shipping.

4.1 Punnet mass distribution

Data collected and analysed during the 2011/2012 season, with more than 65,075 punnets of grapes packed, display distinct differences between the packing systems studied. The generic scale packing technique shows a distribution skewed towards the upper limit in Figure 4.1, with an intuitive implication of increased giveaway.

Figure 4.1: Generic scale system punnet net mass distribution

The local storage combination system, shown in Figure 4.2, displays a skewed distribution towards the lower limit. It indicates that the system's algorithm, which provides a target mass independent of the upper and lower limits, has a marked effect, with a positive influence on giveaway.

Figure 4.2: Local storage combination system punnet net mass distribution

The conveyor distribution system, as shown in Figure 4.3, indicates that this system also has a skewed distribution towards the lower limit. The distribution is also wider relative to the other systems tested, with a marked tail towards the upper limit.

Figure 4.3: Conveyor system punnet net mass distribution

From Figure 4.1, the net mass of punnets when packed using generic scales has a mean (µ) of 513,3g, a standard deviation (σ) of 7,2g, and a mode of 515g. The clearly cut tails at 498g and 528g correspond to the mass limits of the external check-weigher. The punnet-packing process is totally random when using this system. Punnets can be made up of any arbitrary bunches as long as the resulting mass falls between the upper and lower limits. Although the limits for the packers were the same as on the check-weigher, 10,3% of the day's 13,042 punnets were rejected by the external check-weigher.

Figure 4.2 depicts the net punnet mass distribution for the local storage combination system. The mean (µ) is 509,8g, the σ is 9,2g, and the mode is 503g. This skew distribution can be attributed to the dynamic target mass function of the system, which aims to make a punnet combination closest to the target mass. The target mass was the same as the lower limit on the system - 497g. Therefore, at a mere 6g over target, the mode shows that the targeting functionality has an observable effect. The upper limit of this system was set higher than the generic scales because the operators were still new to the system, and a larger mass bandwidth makes it easier to use in the beginning. The check-weigher's limits were set up accordingly. Of the day's 12,847 punnets, 4,8% were rejected by the external check-weigher. This shows that the local storage combination system's internal check-weighing function is relatively effective, but that human error still exists.

The net punnet mass distribution for the conveyor system is shown in Figure 4.3 with µ 521g; σ 17,5g, and mode 496g. This system's standard deviation is approximately double that of the generic scale and the local storage combination systems. As it functions as a combination system with a limited storage area on the conveyor, throughput can be increased by extending the bandwidth. During data collection, the bandwidth was set to 71g to increase throughput further. Nevertheless, the mode of the distribution shows that combinations closer to the target mass of 491g indeed have higher priority. Of the day's 17,940 punnets, 4% were rejected by the external check-weigher.

According to its log, the computer-supported scale system produced 21,246 punnets on the particular day, with an average net mass of 502,2g, marginally higher than the 502g target mass. The dynamic target mass adjustment function implemented in this system is therefore effective. As the system does not have an external check-weigher, the punnet mass distribution is not available. However, the internal check-weigher uses the same system parameters to perform its task.

It therefore becomes clear that the check-weighers detected under-mass punnets caused by human or machine errors. In the next section, the feedback data from the UK is used as validation for the effectiveness of the check-weighers.

4.2 Validation by means of punnet mass feedback from UK

The punnet mass data from the UK sketches a clear picture of the effect of external check-weighing (generic scales, local storage combination system, and the conveyor system) and mandatory internal check-weighing (computer-supported scale system). The two sets of data from the UK are shown in Figure 4.4. During the 2010/2011 season, the generic scale, local storage combination, and the conveyor systems were the same as in the following year, but without integrated external check-weighers. In the last pack house a generic scale system was replaced by a computer-supported scale system for the 2011/2012 packing season. Since 2010 the emphasis on minimum and maximum punnet mass has increased, and has resulted in a lower and smaller allowable mass bandwidth. Lower limits were reduced to embrace the average system. The upper limits were set by the company as a target to reduce giveaway.

Farmsoft fresh produce app  delivers fresh produce packing, for cherry, berry, onion packing, pepper & capsicum packing, avocado, potato packing, broccoli, salad, spinach, loose leaf lettuce, cucumber, tomato packing, citrus, garlic, asparagus, onion inventory storage, potato inventory storage, carrot, bean, mango, seafood packing.   
The app also manages fresh cut flower, food service, coleslaw & slaw packing, banana, orange, lemon, lime, grape, seed, stone-fruit, cauliflower, strawberry, fresh produce ERP, flower packing
Fresh produce quality control is made easy with Farmsoft:  Farm management appMeat packing app for beef poultry seafood.

Fresh produce traceability app by Farmsoft provides potato traceability, onion traceability, tomato, fresh produce blockchain traceability, pepper & capsicum traceability, carrot, salad, leafy green, citrus, cucumber, asparagus traceability, seafood traceability app, fresh cut traceability, food service traceability app, coleslaw traceability, strawberry, banana, grape, seed, flower, loose leaf, QC, fresh produce barcode.  
Fully integrated traceability software manages meat traceability app for slaughterhouses, low cost meat packing, meat packing software, meat packing quality control, meat packing hardware requirements, slaughterhouse software, beef packing software solutions.

Additional traceability for farm to fork traceability, fresh produce profit analysis, chili processing, fresh produce production planning, fresh produce RFID, blockchain fresh produce, fresh produce supply chain planning, fresh produce sales solution, packhouse management software, fresh produce traceability app, fruit vegetable inventory management for fresh produce stock control fruit packing system for packhouse processing of onion storage and quality.  

Walmart food safety compliance app for date plantation software, SENASA, fresh produce RFID app, perishable inventory management software, fresh produce API integration, coleslaw production, XERO for fresh produce packers, inventory management app for fresh produce waste reduction.
Woolworths fresh produce compliance and Woolworths food handling compliance, Coles compliance, Coles labels, fresh cut packing storage traceability, post harvest traceability software, potato packing system, simple traceability solution, save time efficient inventory.

Reduce errors in fresh produce packing and processing, increase accuracy of fresh produce shipping, reduce administration costs fresh produce packing, less fresh produce waste, avocado software, potato solution, carrot solution, broccoli control, mango processing quality, apple packing and processing, pepper packing app by farmsoft, chili packing app, chili powder app, hot pepper sauce manufacturing.

Farmsoft vertical farming app, farm traceability app, farm budgeting, farm quality, farm inventory, farm diary, farm land management.

Download Farmsoft Brochures:   Fresh produce app    |    Meat packing app    |    Farming app    |     Fresh produce RFID   
Implement Farmsoft fresh produce apps to increase fresh produce business productivity in fruit & vegetable packhouse: reduce fresh produce waste, food safety compliance, for easy traceability, automatic inventory control, simple quality control, rapid recall and mock recalls, and 100% accurate shipping, meat packing app, optional farming app.

Farmsoft QC Quality Inspection app makes fresh produce quality control rapid and accurate for all fresh produce packers:  cherry, berry, onion, pepper & capsicum, avocado, potato quality, broccoli, salad quality inspection, spinach, lettuce, cucumber, tomato quality, citrus, asparagus, garlic quality inspection app, carrot quality, bean, mango, leafy greens, fresh cut quality inspection, food service quality app, coleslaw quality, strawberry quality inspection app, grape quality, meat quality control app, flower quality.